Properties of Link Reversal Algorithms for Routing and Leader

نویسندگان

  • Tsvetomira Radeva
  • Leslie A. Kolodziejski
چکیده

We present two link-reversal algorithms and some interesting properties that they satisfy. First, we describe the Partial Reversal (PR) algorithm [13], which ensures that the underlying graph structure is destination-oriented and acyclic. These properties of PR make it useful in routing protocols and algorithms for solving leader election and mutual exclusion. While proofs exist to establish the acyclicity property of PR, they rely on assigning labels to either the nodes or the edges in the graph. In this work we present simpler direct proof of the acyclicity property of partial reversal without using any external or dynamic labeling mechanisms. Second, we describe the leader election (LE) algorithm of [16], which guarantees that a unique leader is elected in an asynchronous network with a dynamically-changing communication topology. The algorithm ensures that, no matter what pattern of topology changes occurs, if topology changes cease, then eventually every connected component contains a unique leader and all nodes have directed paths to that leader. Our contribution includes a complexity analysis of the algorithm showing that after topology changes stop, no more than O(n) elections occur in the system. We also provide a discussion on certain situations in which a new leader is elected (unnecessarily) when there is already another leader in the same connected component. Finally, we show how the LE algorithm can be augmented in such a way that nodes also have the shortest path to the leader. Thesis Supervisor: Nancy Lynch Title: Professor of Electrical Engineering and Computer Science

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Checking of Link-Reversal-Based Concurrent Systems

Link reversal is an algorithmic method with various applications. Originally proposed by Gafni and Bertsekas in 1981 for routing in radio networks, it has been later applied also to solve concurrency related problems as mutual exclusion, resource allocation, and leader election. For resource allocation, conflicts can be represented by conflict graphs, and link reversal algorithms work on these ...

متن کامل

Neighbor Oblivious and Finite-State Algorithms for Circumventing Local Minima in Geographic Forwarding

We propose distributed link reversal algorithms to circumvent communication voids in geographic routing. We also solve the attendant problem of integer overflow in these algorithms. These are achieved in two steps. First, we derive partial and full link reversal algorithms that do not require one-hop neighbor information, and convert a destination-disoriented directed acyclic graph (DAG) to a d...

متن کامل

Analysis of Link Reversal Routing Algorithms

Link reversal algorithms provide a simple mechanism for routing in communication networks whose topology is frequently changing, such as in mobile ad hoc networks. A link reversal algorithm routes by imposing a direction on each network link such that the resulting graph is a destination oriented DAG. Whenever a node loses routes to the destination, it reacts by reversing some (or all) of its i...

متن کامل

Point-to-point Routing Readings: Point-to-point Message Routing: (optional) Brad Karp's Powerpoint Slides on Multi-hop Wireless Networks Johnson, Maltz: Dynamic Source Routing (dsr) Hu, Johnson: Caching Strategies for On-demand Routing Protocols

Next time, we’ll continue with routing: Perkins, Royer: Ad hoc on-demand distance-vector routing (AODV) Chen, Murphy: Enabling disconnected transitive communication in mobile ad hoc networks Link-reversal algorithms: Gafni, Bertsekas: Distributed algorithms for generating loop-free routes in networks with frequently changing topology Park, Corson: A highly adaptive distributed routing algorithm...

متن کامل

Loop-Free Backpressure Routing Using Link-Reversal Algorithms

The backpressure routing policy is known to be a throughput optimal policy that supports any feasible traffic demand in data networks, but may have poor delay performance when packets traverse loops in the network. In this paper, we study loop-free backpressure routing policies that forward packets along directed acyclic graphs (DAGs) to avoid the looping problem. These policies use link revers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013